A Smoothed Dual Approach for Variational Wasserstein Problems
نویسندگان
چکیده
Variational problems that involve Wasserstein distances have been recently proposed to summarize and learn from probability measures. Despite being conceptually simple, such problems are computationally challenging because they involve minimizing over quantities (Wasserstein distances) that are themselves hard to compute. We show that the dual formulation of Wasserstein variational problems introduced recently by [13] can be regularized using an entropic smoothing, which leads to smooth, differentiable, convex optimization problems that are simpler to implement and numerically more stable. We illustrate the versatility of this approach by applying it to the computation of Wasserstein barycenters and gradient flows of spacial regularization functionals.
منابع مشابه
Wasserstein Regularization of Imaging Problems
This paper introduces a novel and generic framework embedding statistical constraints for variational problems. We resort to the theory of Monge-Kantorovich optimal mass transport to define penalty terms depending on statistics from images. To cope with the computation time issue of the corresponding Wasserstein distances involved in this approach, we propose an approximate variational formulat...
متن کاملHartley Series Direct Method for Variational Problems
The computational method based on using the operational matrix of anorthogonal function for solving variational problems is computeroriented. In this approach, a truncated Hartley series together withthe operational matrix of integration and integration of the crossproduct of two cas vectors are used for finding the solution ofvariational problems. Two illustrative...
متن کاملLearning to solve inverse problems using Wasserstein loss
We propose using the Wasserstein loss for training in inverse problems. In particular, we consider a learned primal-dual reconstruction scheme for ill-posed inverse problems using the Wasserstein distance as loss function in the learning. This is motivated by miss-alignments in training data, which when using standard mean squared error loss could severely degrade reconstruction quality. We pro...
متن کاملVariational Image Segmentation and Cosegmentation with the Wasserstein Distance
We present novel variational approaches for segmenting and cosegmenting images. Our supervised segmentation approach extends the classical Continuous Cut approach by a global appearance-based data term enforcing closeness of aggregated appearance statistics to a given prior model. This novel data term considers non-spatial, deformationinvariant statistics with the help of the Wasserstein distan...
متن کاملDistributionally Robust Stochastic Optimization with Wasserstein Distance
Distributionally robust stochastic optimization (DRSO) is a robust approach to stochastic optimization problems in which the underlying distribution is not known exactly. It seeks a decision which hedges against the worst-case distribution in an ambiguity set, containing a family of distributions relevant to the considered problem. Unfortunately, the worst-case distributions resulting from many...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Imaging Sciences
دوره 9 شماره
صفحات -
تاریخ انتشار 2016